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A numerical simulation of the rarefied hypersonic 
flat-plate problem 
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(Received 3 February 1976) 

The direct-simulation Monte-Carlo method for the fd Boltzmann equation is 
applied to the problem of rarefied hypersonic flow of rotationally excited N, 
past the leading edge of a two-dimensional flat plate aligned with the free 
stream. An approximate collision model representing rotational-translational 
energy exchanges is developed for use in the calculations. The effects of this and 
other inelastic collision models and of the single-parameter Maxwell gas-surface 
interaction law on the flow in the kinetic/transition regime are discussed. 

1. Introduction 
The problem of hypersonic rarefied flow past a two-dimensional flat plate 

aligned with the free stream is one of fundamental interest since i t  generates a 
wide range of basic flow phenomena. These extend from a highly non-equilibrium 
kinetic flow near the leading edge through the merged layer and the strong and 
weak interaction regimes to a classical boundary-layer flow far downstream. But 
although the flow within and downstream of the merged layer is now well 
understood, a coherent experimental-theoretical picture of the initial kinetic 
region and the transition region has yet to emerge. On the experimental side it is 
widely recognized that, owing to the highly non-equilibrium nature of the flow 
in this region, accurate measurements are extremely hard to obtain. The 
probIems of instrumentation and the large correction factors that must be 
applied to most readings, combined with the difficulties in establishing a uniform 
and precisely specified test flow, all contribute to the uncertainties in the result~s. 
On the theoretical side, progress towards accurate solutions for diatomic gases 
has been hampered for a variety of reasons. The most significant has been the 
formidable task of including the effects of rotational-translational energy 
exchange in numerical or other solutions of the Boltzmann equation which 
describes the kinetic flow at the molecular level. There is also uncertainty 
surrounding the precise gas-surface interaction law to be used in hypersonic 
situations. Neither of these two phenomena is properly understood, yet they have 
sizable effects on the development of the initial kinetic flow. 

Several different approaches have been adopted in solving the leading-edge 
problem. Using kite-difference methods, Tannehill, Mohling & Rakich (1 973) 
have attempted to extend the solution of the time-dependent Navier-Stokes 
equation, i.e. the continuum equation, into the kinetic regime by incorporating 
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velocity slip and a temperature jump at the wall. They have obtained un- 
expectedly plausible results, however, for y = 1.4 it  is probable that the neglect 
of rotational non-equilibrium effects partiajly compensates for the inadequacy 
of the continuum equations upstream of the merged layer. A more rigorous 
approach has been made by Huang et al. (1972), who, following earlier work, 
have applied discrete ordinate methods to polyatomic extensions of BGK-type 
model equations and have obtained the first kinetic-theory treatment of the 
leading-edge problem for a diatomic gas. For a free-stream Mach number N ,  
of 6-1 these authors conclude that the presence of the rotational internal energy 
has a considerable effect on the structure of the flow field near the leading edge. 

The methods of the above references yield reasonable results at moderate 
M,. However, since both employ approximations to the Boltzmann equation 
which are of dubious validity at high Ma, it is difficult to justify their extension 
to the hypersonic situation. 

The direct-simulation Monte-Carlo method (DSM), devised by Bird, yields 
numerical solutions for the full nonlinear Boltzmann equation (see Bird 1970b). 
It has already been successfully applied to the leading-edge problem for a 
monatomic gas by Bird (1966) and later, for very high M,, by Vogenitz, Broad- 
well & Bird (1969). A notable feature of these calculations is that, for plates at 
least several times the free-stream mean free path A,  in length, the initial kinetic 
flow is not dominated by free molecular effects. This is contrary to Lewis’s 
(1  971) interpretation of his experimental data for a diatomic gas. 

In  theory the DSM may be applied to polyatomic gas flows provided that a 
model is available which incorporates the internal-translational energy exchange 
in inelastic collisions. Unfortunately simple impulsive models have proved 
unsuitable for simulation while the use of more realistic classical models (Mac- 
pherson 1971) such as that due to Parker (1959) or their quantum equivalents 
is not feasible for the treatment of complex flows because of prohibitive com- 
puting-time requirements. Recently several phenomenological/statistical colli- 
sion models have been proposed (see Bird 1970a; Borgnakke & Larsen 1973; 
Larsen & Borgnakke 1974) which essentially trade a realistic microsoopic 
description of the energy transfer process in return for simplicity and flexibility. 
As yet the development of such models has only just begun and their further 
refinement should provide powerful schemes for many applications to poly- 
atomic gases. 

In  the present report we extend an earlier study (Pullin, Harvey & Bienkowski 
1974) of direct-simulation calculations for the hypersonic two-dimensional 
leading-edge flow of a rotationally excited but vibrationally frozen diatomic gas. 
Emphasis is here placed on investigating some of the effects of using different 
binary collision models and gas-surface interactions on the flow in the kinetic 
regime and the subsequent transition to a merged-type flow. For the most 
part the calculations were performed using a hybrid collision model composed 
of an approximate form of Parker’s classical soft-molecule model in conjunction 
with a two-class statistical technique due to Borgnakke & Larsen (1973). 
Calculations using the energy-sink method (Bird 1 9 7 0 4  and the restricted- 
exchange model (Larsen & Borgnakke 1974) are also presented. 
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2. The direct-simulation method 
The direct-simulation htonte-Carlo method (Bird 1970 b ) ,  the technique used 

in the present study, bypasses analytical formulations of kinetic theory in favour 
of a direct numerical probabilistic formulation of the full Boltzmann equation 

from the calculated motion of several thousand sample particles. In  (I), 
f ( x ,  v, E ,  t )  is the distribution function, x the position vector, v the particle 
velocity, E the particle internal energy, n(x, t )  the number density and the 
right-hand side represents the collision integral (see Chapman & Cowling 1970, 
chap. 3). 

The simulation computes the time evolution of the sample ensemble in a 
bounded region of classical phase space (x, v, E space) from a specified initial 
configuration. A discretization of time into intervals t ,  < t < t ,  -k At,, 
m = 1 ,2 ,  . . . , where At, satisfies the convection and collision conditions 

.5 being an average velocity and r, the local mean free time, allows t,he decoupling 
of the convection and collision terms in (1). Each may then be simulated alter- 
nately in the time-interval sequence independent of the other. During the 
convection mode particles move on free trajectories in the region of physical 
simulation space Q and may either be lost from S2 across imaginary boundaries 
or may reflect from a solid boundary according to some prescribed surface inter- 
action law. For the collision simulation, a statistical interpretation of the 
complete collision integral in ( 1 )  allows the formulation of binary collision 
probabilit'ies per particle pair in a system of contiguous cells wk, k: = 1, . . . , K ,  of 
a. These, together with a time increment per collision 

(3) 
where Axk  is the cell volume, Nk the number of particles in w k ,  & the real-to- 
simulated gas density ratio and b,(g) the maximum allowed impact parameter 
(miss distance), g being the pair's relative speed, ensures that collisions are 
simulated a t  the appropriate rate in each w k .  The calculation is always unsteady, 
a steady flow existing in a stochastic sense where boundary conditions aze such 
that. a macroscopic steady flow would be expected after some transient time, 
Extensive experience with the DSM by several users indicates that it is all but 
unconditionally stable. 

An important practical advantage of the method is that f need not be con- 
sidered explicitly, the phase-space information being carried directly by the 
sample particles. Thus estimates of fluid state or surface flux properties are 
obtained by averaging the contributions of individual sample particies as they 
pass through cells or strike segments of a body surface. Any moment (&(v, E ) )  
off is then approximated by 

I N  
Q = znzl Q, 

over a sample of N independent observations. 

t . At,/Ax $ 1, At, 4 r,, (2) 

Atk = 2AXk/pk  Ni gTb;(g), 

(4) 

4k2 
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3. Collision model 
The calculation of individual binary collisions and the subsequent replacement 

of the pre-collision dynamical co-ordinates by their post-collision values con- 
stitute an integral part of the DSM. A binary collision is defined by the initial 
relative translational energy Et = &mg2 of the pair’s mass centre, the initial 
rotational energies E,, i = 1 , 2, the miss distance b and the azimuthal angle 8. 
The post-collision values of the energies are denoted by E; and E;, i = 1,2. 

We assume that inelasticity affects collisions only through energy transfer 
superimposed on an otherwise spherical scattering process. Thus the pair con- 
ditional collision probability P(g)oc gb%(g) and the deflexion angle xo(b, g) can 
be computed from monatomic collision dynamics independently of Ei, i = 1,2. 

Using the Morse potential 

&(r) = 4kT0[e-dr- q) - e-H+.)] , ( 5 )  

where To is the attractive well depth temperature, a the range factor and 
r = CT the potential zero point,t xo was computed as a function of (b/bo)2 and 
g* = g(4kT,/m)-* by quadrature and stored as an array for use in the simulation. 
An arbitrary cut-off for xo in ( b / t ~ ~ ) ~ ,  g* space was used to define the maximum 
miss distance bo(g*)/cr such that the xo singularities (see Hirschfelder, Curtiss & 
Bird 1954, p. 555) for g* < g:, the critical orbiting speed, were included. The 
range of g* considered was 10.0-0*01 and the small number of collisions outside 
this were neglected. It is further assumed that molecular rotation is the only 
internal energy mode available for exchange with translational energy during 
collisions and that vibrational and other internal modes remain frozen. 

Ideally a model of the inelastic exchange should (i) satisfy some form of detailed 
balancing principle (see Chapman & Cowling 1970, pp. 68, 204) necessary to 
obtain at equilibrium energy equipartition of 4kT per degree of freedom per 
molecule and the appropriate Boltzmann velocity and internal energy distribu- 
tions and(ii) retain a realistic microscopic description of the inelastic exchange 
process. We regard this as important in the present context because of the 
large departures from equilibrium and the high degree of anisotropy in the 
initial kinetic leading-edge flow. 

There is evidence based on transport-theory calculations (Lordi & Mates 
1970) that an approximate analytical form of Parker’s (1959) non-spherical 
classical potential model retains some physical features of the exchange process, 
but owing to simplifications and approximations employed, detailed balance is 
violated. On the other hand a simple relaxation technique proposed recently 
(Borgnakke & Larsen 1973) which incorporates a purely statistical two-class 
model of the energy exchange satisfies detailed balancing but is probably 
unrealistic far from equilibrium. For the present calculations we have adopted 
a hybrid approach in which the energy exchange is treated either classically or 
statistically in an ad hoc fashion described below. The composite model is con- 
structed in a manner which retains some advantages of either approach. 

t For N,, To = 91.5 OK, 01 = 4.02 A-l, cr = 3.81 A and g,* = 1.23. 
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FIGURE 1. Molecular orientation for planar rotation. 

The classical method, originally due to Parker (1959), is based on perturbation 
methods and leads to an approximate analytical solution for the energy transfer 
per particle in terms of the pre-collision dynamical and geometrical co-ordinates. 

Parker (1959) and Lordi & Mates (1970) consider the collision of two identical 
homonuclear rigid rotor molecules, assuming that the rotation plane of each 
coincides with the collision plane (coplanar collisions). The interaction potential 
is the modified Morse model, given for this case by 

W )  = + w - 7  4, $1, $213 ( 6 )  
2 

where 

Q, and $$, i = 1,2 are as in figure 1 and S represents the potential non-sphericity. 
The Parker solution proceeds by assuming 8 < 1 and expanding the solution 
in the form 

(7) i 
r(t) = ro(t) + 8rl(t) + s2r2(t) + . . ., 
$ ( t )  = M) + s M )  + a242(t) + * * - Y 

$&) = $&) + 8$&) + 82$i2(t) + . . . , i = 1,2.  

Substitution of (7) into the Lagrangian form of the equations of motion leads 
to zeroth-, first- and higher-order perturbation equations for the system, The 
solution Pi0(t) is simply that for steady rotation: 

$io(t) = wi t +yi, (8 )  

where 7~ 2 yi 0 is the rotor orientation at the point of closest approach ( t  = 0 )  
and wi = $io( - 00) is the initial angular velocity, at t = - co. The energy transfer is 

(9) 

where I = &ma2 is the moment of inertia of a rigid rotor molecule, m is the 

- 
AEi =.E;-Ed = S ~ ~ , ~ ( ~ O ) + ~ ~ S ~ [ ~ ( ~ O ) + ~ O ) ~ ~ ~ ) ] + O ( S ~ ) ,  i = 1,2, 
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molecular mass, d the internuclear separation and E,  = &TW$ is the initial 
rotational energy. The bars in (9) refer to averages over y, uniformly distributed 
in (0, n). 

Using an approximate solution for ro(t), Lordi & Mates [1970, equation (44)] 

obtain a closed-form solution for $,,(oo). It turns out that #$,(a) vanishes but 

that K(a) is finite. However, from (9) we see that, for consistencj to order 82, 

an approximation to $,,(a) is required, which means considering the second- 
order rotational equations. In  the appendix, a solution of this kind is obtained, 
namely (32). Substituting this together with the equation [(31) from the appendix] 

for 9t1(a) into (9) we find an expression for the orientation-averaged energy 
exchange : 

where 

- 

- 

- 

AEi = 6’(kTO) (~/GX~)~X‘F~(F~- ~x’F,), i = 1,2, (10) 

cos ( u z )  du u sin (uz)  du 
[( 1 + x2)* cosh u - 112 Fz(x’ ’) = 

and x = 6/(4RTO)*, 6 = 9[1-&2]*, S = b / q ,  

Z’ = (8/ad) ( E,/Z~T,)*X-~, z = Z’ - (4/01~) &( 1 - &)-*. 

The integrals Fl and 3, may be evaluated by contour integration, which 
leads to an expression for AE, in terms of a few elementary functions. However, 
(10) is not suitable for all classes of collisions. By considering an extreme case of 
initially non-rotating (E, = 0) head-on collisions (b  = 0 ) ,  then using (10) and 
evaluating Fl(x, 0 ) ,  it may be shown that the ratio of the energy transferred to 
the initial translational energy is 

- 

- -  
(AEl+AE,) /Et  = 2(48/a~I)~ [ (n+x-  t a r ~ - ~ ~ ) / ~ ] ~ ,  

where here x = E,/kTo. Clearly this ratio must be less than unity but for N,, 
using Parker’s values of d = 1.09A and 6 = 0.259,t the left-hand side of (11) 
is equal to 0.45 for x = 2 and exceeds unity for x 5 1.2. Thus (10) cannot be 
uniformly valid for values of Et characteristic of collisions at equilibrium tem- 
peratures To or lower, most probably because the expansion (7) fails to converge. 
Furthermore, even for temperatures T 9 To, when (10) is used in a simulation it 
does not lead to complete energy equipartition at equilibrium. This may be 
attributed to violation of detailed balancing (the lack of inverse collisions) due 
in turn to the assumptions employed in developing the model, particularly that 
of coplanar collisions. 

Using the relaxation technique (Borgnakke & Larsen 1973), for given Et and 
E, (i = 1,!2), E; and Bi ( i  = 1,2) are computed in a statistical manner assuming 
a two-class trayfer. Collisions are either fully elastic with probability l/ZR or 
fully inelastic wgh probability (2, - l)/Z,, 2, being the constant pre-specified 
rotational collision number. For the elastio case, the post-collision probability 
distributions are constructed specifically to satisfy detailed balance. A possible 

t See Lordi & Mates (1970). This value waa obtained by matohing predioted and experi- 
mental values of the rotational relaxation number ZR for N,. Both theory and experiment 
yield values of ZR varying from Z R  N 2 at T = 100°K to Z R  N I0 at T = 1000°K. 
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objection to the global use of this model for highly non-equilibrium situations 
was stated earlier. 

In  view of the shortcomings of both of the above techniques most of the 
calculations presented were performed using a hybrid approach where the 
classical Parker model is chosen for the collisions of high relative translational 
energy and the statistical method for low energy encounters as follows. 

(i) If E, < 2kT0, E; and E; (i = 1,2) are calculated using the Borgnakke & 
Larsen model with 2, = 3. 

(ii) If Et 2 2kT0 the classical model is chosen. Equation (10) is used to deter- 
mine AE; (i = 1,2) then E; is computed from E; = E, - (AE, + AP,). 

(iii) If (ii) leads to an exchange which drives the pair internal energy towards 
a state of two-particle energy equipartition (defined by El = E, -N +Et for two 
internal degrees of freedom), then the classical transfer is accepted. If not the 
transfer is recalculated using the relaxation model. 

The above technique is purely ad Itoc, designed essentially to drive the gas into 
a state of local energy equipartition in a manner similar to the energy-sink 
method (Bird 1970a) while retaining, far from equilibrium, for Et > 2kT0, a 
detailed description of the energy exchange process with a correlation between 
the pre- and post-collision properties. The model correctly simulates temperature 
relaxation and has been shown to lead to approximate energy equipartition a t  
equilibrium for temperatures up to 2000 OK. Note that this is not automatically 
guaranteed since an H-theorem cannot be established. At equilibrium, the 
velocity distribution is Maxwellian but the correct exp ( - E,/kT) rotational 
energy distribution is not achieved. 

4. Boundary conditions 
The physical simulation space SZ is bounded by an2, the solid body surface, 

and aQ,, an arbitrary curve within the fluid. On aQ,, the incident boundary 
condition is taken to be free-molecule flow of the free stream. Thus at each 
Atm a nearly fixed number of sample particles, determined by the simulated 
free-stream density, enters s2 along da,, their dynamical properties being sampled 
from the distribution 

f+ocv.nexp{-[~m(v-U,)~+E]/kT,} for v.n  > 0, (12) 
where n is the inward normal to aQ,. For v.n < 0 the boundary condition is 
automatically satisfied by particles leaving SZ during the convection simulation 
mode. 

The boundary condition on aQ2 was taken to be the Maxwell gas-surface 
law specified by the surface reflexion kernel (see KugEer 1974) 

P(v,Elv’, E‘)E (1-a’) S(V’-V;) S(E’-E) 
+ a’( 2/7r) v’ . n exp { - ( #md2 + E’)/kT,}, ( 13) 

where T, is the wall temperature, i.e. we assume a combination of specular 
reflexion with probability 1 - a‘ and fully diffuse, fully accommodated reflexion 
at T, with probability a’. The three values of a’ chosen for the calculations were 
a‘ = 0.5, 0.75 and 1.0. 
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% T m  ( O K )  
21 20.0 
22.93 20.0 

22.9 - 

22.9 - 

25 10.0 

25 10.0 

25 10.0 

TWITa y Collision model Q(a)* &,/Af, 
14.4 3 Morsepotential 0.83 0.073 
14.4 3 Mome+hybrid 0.83 0.073 

14.4 3 a = 8.t Energy - 0.068 

14.4 3 u = 13.55t - 0.103 

30 Morse+hybrid 0.79 0.048 

30 $ Morse+hybrid 0.79 0.048S 

30 $ Morse+hybrid 0.79 0.048S 

t a = exponent in inverse power law V = a/.”. 
$ Note, these values of &/Afb assume u’ = 1. 

TABLE 1. Flow conditions 

model 

sink 

Statistical 

model 

model 

model 

U’ 

1.0 
1.0 

1.0 

1.0 

1.0 

0.75 

0-50 

Ll~cc. 
96 
96 

100 

100 

102 

204 

306 

5. Flow conditions 
The flow conditions used for the calculations were chosen to match those of 

recent Nz experiments (Lewis 1971; J. Davis 1974, private communication) 
at M, N 20-25 and are summarized in table 1. Each plate was of finite 
length L and had a sharp leading edge (at the origin of Cartesian co-ordinates 
(x, y) with z positive in the flow direction) with a 10’ undersurface angle. The 
upstream portions of aQ, were tailored to contain forward propagation effects 
from the undersurface in so far as these may influence the flow for y > 0. 

In  simulations the length unit was A,  = 2q(T,)/pE, where Z = (8RT,/n)* and 
q(T,) is the viscosity for the chosen collision model. However, for many kinetic 
flow situations A, is not a suitable length scale, f i s t  since i t  is rather too 
sensitive to the collision model at the low free-stream temperatures at which 
experiments are performed and secondly since it does not relate directly to any 
limiting physical model of the flow. More widely used length scales based on the 
free-molecule limit are the free-stream and body-reflected particle free paths 
hjb and A,  respectively (Hamel & Cooper 1969). For u‘ = 1 we take these to be 

where a function of speed, is a standard collision integral associated with 
the viscosity cross-section (see Hirschfelder et al. 1954, $ $82-84) for collisions 
between free-stream and typically diffusively body-reflected particles, 

S, = Um/(2RTm)* 

is the speed ratio, Urn is the free-stream speed and n,,, the free-stream number 
density. For hard-sphere molecules @)* = 1. For the Morse potential we may 
take values for the similar Lennard Jones 6-12 model tabulated in Hirschfelder 
et al. (1954, table I-R and (8.2-13). 
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Continuum 
(Navier-Stokes) Inviseid 

Mm* 1 

Strong Weak - 
v a 3  -0.5 -0.15 

XI1,b  0 - 1.5 N 20’0 

FIGURE 2. Schematic model of leading-edge flow. 

Note that for Q’ .c 1 the above definitions of A,, and A ,  must be modiiied 
by factors of l/a’ and a’/(2 - Q) respectively. 

6. Results and discussion 
Figure 2 shows a schematic representation of the flat-plate flow. Very near 

the leading edge collisions between free-stream and body-reflected particles 
generate the initial kinetic disturbance. The highly non-equilibrium flow is here 
characterized by the strongly competing effects of molecule-molecule and 
moleculebody encounters and the distribution function is far from Maxwellian. 
Further downstream molecule-molecule collisions begin to dominate, causing a 
transition to an essentially continuum flow in which the initial disturbance 
develops the dual features of a wall boundary layer merged with a non-Rankine- 
Hugoniot shock. The fully continuum strong and weak interaction regimes 
which develop even further downstream are outside the range of the present 
calculations. 

Earlier calculations (Pullin et al. 1974) for the case r’ = 1 indicated the fol- 

(i) The initial collisional disturbance extends forward of the leading edge 
with the result that some surface properties exceed the free-molecule limit as 
X 3 o+. 

(ii) The transition to a merged-layer type of flow begins near Z/A,~ 21 1 and 
is accompanied by maxima in the surface flow properties. 

(iii) Through energy absorption in initial collisions, the rotational degrees of 
freedom cause substantial quantitative changes in the flow properties compared 
with the monatomic case. 

Figures 3-9 show a selection of flow properties obtained from the present 
calculations using estimates of the type (4). It is generally assumed that, for N 
large in (4), each 0 is normally distributed with mean (Q) and relative standard 

lowing. 
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X/&b 

FIUUR.E 3. Effect of molecular model on the plate pressure. M, = 22.93, Tw/Tm = 14.4, 
u‘ = 1. - - a ,  rnonotomic model with Morse potential; ---, presentdiatomic model. Inverse- 
power law, V,(r) = a/+: -, a = 8, energy-sink model; - --, a = 13.5, restricted-energy- 
exahmge statistical model. 

deviation S/Q 21 N-8. Hence for 3 % relative deviation, N - lo3 is required, 
which was generally the value obtained in the present calculations. In  the figures, 
where the interests of clarity permit, actual calculated points have been plotted 
so as to give a ready indication of scatter in the results. 

Figure 3 shows, for cr’ = 1, the normal surface pressure P,/qm calculated using 
different molecular models. The free-molecule pressure Pfm is defined later in 
(15). These models include the present hybrid model together with Bird’s 
(1970a) energy-sink method and the restricted-energy-exchange statistical 
method (Larsen & Borgnakke 1974), both for inverse-power-law potentials. 
Also shown is the result of a monatomic calculation using the spherical Morse 
potential, which, when compared with that for the present diatomic model, 
indicates that the energy-absorbing effect of the rotational degrees of freedom 
leads to a reduction in the pressure peak. The results for the three diatomic 
models show significant agreement for ./Arb > 3 but there are rather large dis- 
crepancies in the kinetic/transition regimes, which may be due to several factors. 
First, the inverse-power models are purely repulsive and do not include an 
attractive potential well as does the Morse model. We may expect this to have 
some effect in the present problem since T, < To. That this is so may be seen by 
noting that, for small z/&, PJqm for the inverse-power-law diatomic models 
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FIQURE 5. Rotational temperature profiles. MCC = 25, TW/Tm = 30. m], data, Lewis (1971). 
Calculations: -0-, U' = 1.00; -.-, U' = 0.75; ---, V' = 0.50. (a) x/&, = 0.24. (b)  
z /A ,~  = 0.70. (c) x/&, = 1.30. (d) z/& = 2.70. 

exceeds the monatomic prediction. This is opposite to the expected influence 
of the internal degrees of freedom alone. A second effect related to the above is 
that, for large classes of important collisions, the present model accounts for the 
possible influence of anisotropy in the energy exchange process (first collisions 
have a highly preferred direction) and also for the effective variation of the 
rotational collision number with temperature. 
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(4 

I 

d 

1 .o 

0.6 1.0 1.4 1.8 

P l P m  
FIGURE 6. Comparison of the density with experiment. 0 ,  data, Davis (1974), M, = 20.56, 
TWITm = 11.4. Present calculations for M, = 22.93, T,JT, = 14.4: -, hybrid collision 
model; --- , statistical model, u = 13.66, $ = 0.10. (a) = 5.9. (a) x/Afb = 4.4. (c) 
XI,#~* = 2.8. (d) ./Arb = 0.76. 

In figure 4 we have plotted Pn/Pfm, where the free-molecule pressure prmlP, is 

(15) 

against x/&, for the three values of a'. Note that here hfb includes the u' depen- 
dence indicated earlier with respect to (14). As can be seen, within the limits of 
statistioal scatter, the three calculations collapse quite well onto a single curve 
in the kinetic regime upstream of the pressure peaks. If pressure is plotted as 
Pn/Pa then a factor of 100 yo between the peaks for cr' = 0.5 and CT' = 1.0 results 
while if x/h, (or for CT' = 1) is used as a horizontal scale there is a small 
but discernible separation of tbe results for the different cases. 

Lewis (1971) measured the rotational temperature TR directly throughout a 
hypersonic flat-plate flow field using an electron-beam technique. These measure- 
ments were extremely difficult to perform and Lewis, perhaps optimistically, 
considers them accurate to  2 % for T' 2 100 OK with the error increasing to 

qmjpll = i" - V') 4- C T ' ( ~ W p ! l l P l ,  
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T 

0.8 1.0 1.2 

PIP, 

FIGURE 7. Effect of surface law on density. M, = 25, TWITm = 30. -0-, Q‘ = 1.0; - - -, 
Q’ = 0.75; ---, U’ = 0.50. (a) ./A, = 9. (b)  ./A, = 27. (c) ./Arn = 63. (d) ./Am = 150. 

about 40 yo for TB 21 10 OK = T,. Calculated rotational temperature profiles for 
three values of u’ at T,/Ta = 30 are compared in figure 5 with Lewis’s measured 
profiles. Agreement with the case u’ = 1 for ./A,, 2 0.24 is quite good but be- 
comes progressively worse further downstream. While this must be partly due 
to the approximate form of the present energy exchange model, there was 
almost certainly an axially decreasing free-stream temperature in the experiment 
which might contribute to the discrepancy downstream. Reducing the fraction 
of diffuse reflexion decreases the value of TR throughout the flow field although 
for values of x/&, larger than those shown this effect diminishes significantly 
near the wall. On the whole, the best agreement with the data is obtained for the 
fully diffuse case. 

In  figure 6 the calculated density profiles for two collision models (with 
u‘ = 1.0) are compared with the electron-beam data of Davis (1974, private 
communication). In  general the near-surface behaviour of the experimental 
profiles and the position of the density peaks are quite well predicted by both 
calculations, but the density maxima are somewhat overestimated. 

The effect of u’ on density at three x stations is shown in figure 7. Here we have 
used A, as the length scale as i t  is identical for all three cases, For the two up- 
stream stations (in the kinetic regime) the effect of decreasing u’ is to reduce the 
density peak and this may be interpreted as a direct consequence of the diminished 
flux of diffusely reflecting particles convecting into the passing free stream. 

’ 
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FIULTRE 8. v,distributions (a) near the wall and (b) for incident particlesM, = 25, Tw/Tm = 30, 
g'= 1.0. ..... , Maxwellian distribution. 0, x/Am = 1, ./An = 0.048; A, x/Am = 11, 
X/&b = 0.526. (a) X , $/Am = 33, xlhfb 
x/&,  = 1.192; 0, %/Aoo = 72,Z/Afb = 3.44. 

1.582; 0, X/Am = 88, X/& = 4.206. ( b )  X , X / A m  = 40, 

Further downstream, as the merged layer develops, the influence of CT' is mainly 
felt in the shock region as a legacy of that in the initial disturbance. In the lower 
part of the viscous layer, the near-surface flow approaches equilibrium with the 
wall and CT' plays a rapidly diminishing role. 

In  addition to macroscopic flow properties, estimates of reduced forms of the 
distribution function were also obtained from the calculations. These were of 
two kinds. 

(i) The distribution of x velocities 

fl(VW 2, Y) = /Im /:mf% dvz dE (16) 

in a number of spatial cells of a. 

the plate surface (i.e. those with vu < 0): 
(ii) The reduced distribution of x velocities for particles striking segments of 

where n is the local number density and N the number flux per unit time incident 
on the segment. 

Figure 8(a) shows histogram estimates of f1 obtained in four cells adjacent 
to the body surface for a calculation using the hybrid collision model and 
u' = 1.0. Figure 8 ( b )  shows corresponding estimates off, for four nearby surface 
segments. Both figures illustrate the highly non-equilibrium character of the 
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distribution function for the near-surface flow. For ./Afb = 0-048,f1 in figure 8 (a) 
gives the appearance of being typically free molecular with the tall narrow peak 
on the right representing the free stream and the squat peak near w x / u ~  = 0 
the body-reflected particles. The sparsely populated band 10 5 wx/a, 5 20, 
together with some particles in wJam 5 10, represents collision products. How- 
ever, the correspondingf2 in figure 8 (b )  indicates that the flux of coIlision products 
to the surface is high in this region. Evidently, although the density of these 
particles is small, they have a high wv and therefore greatly influence the surface 
flux properties near x = 0. Note that collision products for x/Af6 = 0.048 
generally have w, > 0, which means that they must have been created upstream 



704 D. I .  Pullin and J .  K. Harvey 

of this station. This supports the opinion that the initial collisional interaction 
between free-stream and body-reflected particles is significant in a region 
extending forward of the leading edge. 

As the flow moves downstream the fiee-stream peaks for both& and!. rapidly 
shrink owing to collisions. The broad$, curves in figure 8(b)  for z / A f b  = 1.91 and 
3.44 show that at these stations a wide spectrum of slowly evolving incident 
collision products has developed while @ure 8 (a) clearly indicates the increasing 
importance of body-reflected particles in the near-surface flow. In  particular the 
mixture of these and collision products is evident for z / A f b  = 1-58 and 4.21. 

Figure 9 shows estimates offl obtained at  various values of y/hbf for x/h,, = 1-68 
and 4-21. At both z stations the departures from a Maxwellian (equilibrium) 
v, distribution appear to decrease for increasing y. 

7. Conclusion 
A direct numerical simulation of the rarefied hypersonic flow of a rotationally 

excited diatomic gas past the two-dimensional leading edge of a flat plate has 
been presented and in this context the effects of several inelastic collision models 
and of the Maxwell gas-surface law on the kinetic/transition regime flow have 
been investigated. For the chosen flow conditions with T, 4 To the collision 
models employed appear to have a considerable quantitative effect on the flow 
properties, particularly the plate normal pressure, in the kinetic/transition flow. 
This is attributed to the effect of the potential well present for the Morse potential 
but absent for the inverse-power-law models and also to the different treatment 
of rotational-translational energy exchange in elastic collisions. The influence 
of the collision model decreases as the merged layer forms, presumably since 
here the flow is in a more nearly equilibrium state with gas temperatures near the 
wall considerably exceeding To. The collision model used in the majority of the 
present calculations has been developed as an attempt to produce a realistic 
representation of the inelastic collision dynamics, which are thought to be 
important in the highly anisotropic (in velocity space) kinetic regime of the 
flat-plate flow. However, it suffers from a theoretical disadvantage in that detailed 
balance is not satisfied, a property which is hoped to be unimportant in the present 
calculations. 

The calculations also indicate that a substantial portion of specular reflexion 
at  the surface significantly affects the flow well into the merged layer, in agree- 
ment with the conclusions of Vogenitz et al. (1969) for the case of a monatomic 
gas. There is evidence (Kuhlthau & Bishara 1965) that the fully diffuse (a’ = I)  
case is realistic for ‘engineering’ surfaces and by and large comparison of our 
results with available experimental data confirms this conclusion. We note, 
however, that the Maxwell model is a highly idealized one with the probability 
of specular reflexion being constant independent of particle incidence angle and 
energy. It has been suggested that fast particles approaching the plate at 
grazing incidence, say at  angles of order 1/Zm, may in some measure reflect 
specularly. If this were the case then a significant change in the flow properties 
over the first Afb could result which would be masked near the plate surface 
further downstream. 
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For reasons outlined briefly in the introduction it seems fair to say that a t  
present a self-consistent, reliable and unambiguous body of measurements 
upstream of the merged layer is still lacking. It is therefore difficult to evaluate 
the results of the present calculations objectively, particularly for x/Afb < 1, by 
direct comparison with experiment. Judging by the sparse evidence shown in 
figure 6, both the hybrid collision model and the statistical model overpredict 
the density in this region, the latter by a greater margin. In  the authors' view, 
further and more accurate flow measurements in the kinetic regime are a pre- 
requisite for any worth-while development of the present technique applied to 
the flat-plate problem. 

The authors wish to thank Professor G. A. Bird, who kindly supplied his 
' Universal ' program, with which the energy -sink and restricted-exchange model 
calculations were performed. This program was also used to check other results 
presented herein obtained using the authors' own programs. The research was 
sponsored by the Science Research Council. 

Appendix 

rotation case are 
The Lagrangian form of the rotational equations of motion for the planar 

I$, = -av/a$,, i = 1,2. (18) 

Substituting the expansion for $,(t) in (7) and the expansion (6) for the potential 
into (1  8) and equating terms of second order in 6 leads to the following equation 
for $i2(t) : 

I$,z = - $$l[a2K/a$30 - *jlra"/a$* Wile 
- ~ l ~ ~ 2 v , / ~ ~ ~ $ $ l o - ~ l ~ ~ z K / ~ ~ ~ $ , l o ~  (4j) = (1, a, (291). (19) 

A complete solution to (19) first requires solutions of the first-order equations 
for ?,hil(t), $l(t) and rl(t) (the $jla2q/i?$ja$i term can be shown to vanish), 
which would be difficult to obtain. There is reason to believe, however, that the 
physical characteristics of a more complete solution, in particular a description 
of rotational de-excitation collisions, are retained if (19) is approximated by 

I$,, = - $-a[a2v,/a$3]o, i = 1,2,  

that is the rl and $1 terms are neglected. This assumption cannot be justified 
a priori since by virtue of the ordering we should expect all terms to be of equal 
magnitude, but has been introduced primarily to lead to a tractable second-order 
equation. For this reason the present second-order solution remains incomplete. 

Note however that since the $-i2(co) term in (9) is weighted by w,, and since for 
the rotational excitation collisions we expect to dominate the leading-edge 

problem w, < [fil(co)]h, the second term in (9) is probably less important than 

the fil(co) term, in the present context. 
45 B L I  78 
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Substituting (6a) into (20) and integrating over t in ( -00 ,  co) we obtain the 
second-order rotational speed a t  t = 00 as 

Lordi & Mates (1970) have obtained approximate solutions for ro(t) and 1,5-,~(t) 
which may be written as 

-4 
.cI- 

exp [ - a(ro - cr)] = 
4[A cosh (at) - 112’ 

2kTOx4 sin(26,+2viu)du 
#il(t) = I 1- a [A cosh (au) - 112 ’ (23) 

where A = (1 +x2) ) ,  a = $a$, Si = ~,-q5~(0) ,  vi = wi-  g W 2  

and x and g are as defined for (10). Since by (22) exp [ - a(ro - cr)] is an even 
function of t which has a maximum at t = 0 and decreases as exp [-a@/] for 
large Itl, the major contribution to the integral in (21) may be seen to be that 
near t = 0, where for our purposes other terms may be expanded locally as 
Taylor series. Expansions about t = 0 for ~&(t) and q50(t) lead to 

(24) 

(25) 

+il(t) = +i l (O)  + $%,l(O) t + $ar(O) t2 + O(tS), 

q5&) = q50(0) +gbcr-2t + O(t2)’ 

where using (23) the polynomial coefficients in (24) may be obtained as 

exp [ - a(ro - cr)] t sin (26, + 2v, t )  dt, (26) 

(28) 

where the exponential factors in each of the above expressions are given by (22). 
Substituting (8) and (24)-(28) together with (22) into (21), expanding the 

various trigonometric factors, neglecting terms of order PCOS (2vi t ) ,  t 2  sin (2vi t )  
or higher powers of t  and averaging the final result over ‘/i uniformly distributed 
in (0, n) leads to 

8kT0 gi1(0) = 7 exp [ - a(rO(o) - cr)] sin (2SZ), 

(29) 
cos(2vit)dt O0 tsin(2vit)dt s 2kT0 

lbiz(OO) = - (7) 2zEJ-coa [A cosh (at) - 112 -m [ A  cosh (at) - 112 

for the orientation-averaged second-order rotational speed. Extending the upper 
limit of integration in (23) to co, then squaring and averaging over yields the 
first term of order S2 in (9): 

cos (2v, t )  at; ] 2 

[A cosh (at) - 112 
* 
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The transformation u = at in (29 )  and (30) leads to 

Ia(c0) = 2LT0 - x6EI!(x,z), 
(a:) 
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